RELATION BETWEEN PROOF AND CONCEPTION:

THE CASE OF PROOF FOR THE SUM OF TWO EVEN NUMBERS
Takeshi MIYAKAWA
Laboratoire LEIBNIZ — IMAG — Université Joseph Fourier (Grenoble)

The aim of this research is to advance understanding of how mathematical
knowledge functions in the proof construction, especially in its written outcome with
a problem in algebra. The theoretical analysis allows us to explain some reasons of
students' proofs and their tendency obtained by a case study. The first result is that
the difficulty of constructions of mathematical proof is due not only to the algebraic
competence or proof conception, but also to the mathematical knowledge.

INTRODUCTION

In this paper we report some finding from an analysis of students' proofs in algebra
taking into account mathematical knowledge at stake. The aim of this research is to
advance understanding of how knowledge functions in the proof construction,
especially in its written outcome. This is to know which relation may exist between
the mathematical knowledge involved and the nature of proof.

. Our research question comes from the recent study about proof conceptions by Healy
& Hoyles (1998, 2000). These authors found, from their grand survey in the Great
Britain with a statistic method, students' proof conception in algebra that proofs
constructed by students follow an empirical approach or a narrative style rather than
a formal one although most students are aware of their limitations (2000, p.396).
The authors discussed that this problem was due to the lack of algebraic
understanding for the proof (2000, pp.425-426). We share the idea that this is one of
the possible reasons, but we consider that this is not the unique one. We develop this
point in this paper by focusing on the mathematical knowledge. We intend to
evidence the role played by students' conception of the mathematical notion (not
proof conception) in their proof construction and learning as well.

We take for our analysis the proof problem of sum of two even numbers already
studied by Healy & Hoyles. We partially replicate this study (on a smaller scale) and
show how one can interpret the data gathered.

THEORETICAL FRAMEWORK
Proof

To characterise or classify students' approaches to proving, some research results
have already been presented: proof types of Balacheff (1987), proof schemes of
Harel & Sowder (1998), characterisation by the structure of reasoning (Duval,
1991), "proofs that prove" and "proofs that explain" of Hanna (1989), etc. In this
paper, we adopt as a theoretical framework, the proof types of Balacheff (1987)
from "pragmatic proof" to "intellectual proof”, more precisely four types of proof —
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"naive empiricism", "crucial experiment”, "generic example", and "thought
experiment" — and "mathematical proof" (also called "formal proof"). We expect
this choice to be relevant in order to characterise the relationship between the nature
of proof and that of knowledge. In fact, to characterise these types of proof
Balacheff takes into account not only the nature of the underlying rationality and the
language level, but also the nature and the status of knowledge (1987, p.163), which
is the most important point of view in our analysis.

Conception

To identify and differentiate students' knowledge of even number involved in their
proofs, we adopt the notion of conception. Conception is a didactical tool for
modelling the students' knowledge in problem solving situations. It reveals the
plurality of the possible points of view on a same mathematical object, it
differentiates the representations and related methods, and emphasises their more or
less good adaptation at the resolution of such and such class of problems (Artigue,
1990, p.265). In our analysis, we pick up aspects as the operators which are used to
solve a problem, and the language which is also important from the perspective of
proof characterisation!l.

The conceptions of even numbers we can identify, considering operators appearing
in schoolbooks or in students' proofs are following. From C,, we can get out three
operators by the concept of divisibility or multiplicity. Cs is an algebraic one.

. Cy: Even numbers end by 0, 2, 4,:6, or 8.
C,: Even numbers can be divided by 2, or the result of the multiplication' of a
whole number by 2.
C,; : Even numbers can be divided in two identical parts.
Cy, : Even numbers can be decomposed 2 by 2.
C,3 : Even numbers have 2 as a factor.
Cs : Even number can be expressed by a = 2p (p: whole number).

ANALYSIS OF THE POSSIBLE PROOFS FOR EACH CONCEPTION

By this analysis we intend to construct a framework for discussing the data obtained
during the observation. We try to construct several different proofs from
"pragmatic” to "intellectual" involving the conceptions we have presented. This
analysis allows us to locate or to characterise students' proofs, and also to identify
the relation between the conceptions of even number in the proof. Concerning the
representations used to express proofs, we pay attention to the operational one®, that
is, the representations on which computations or transformations can be carried out.
In fact, the natural language is often used in the formulations of proof, but we
should often take care to distinguish it from the operational one.

List of proofs

C;: Even numbers end by 0, 2, 4, 6, or 8.
Naive empiricism (numerical): 2 +4=6,4+8=12,6+ 8 =14, 12 +24 =36.
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Crucial experiment (numerical): 1 take arbitrary two even numbers. 188+ 76 = 264.
Generic example (numerical): With two even numbers: 18 and 24. 18 + 24 = (10 +
8) +(20+4) = (10 +20) + (8 +4) = (10 + 20 + 10) + 2.
We can do this for any two even numbers.

Thought experiment (natural language): Even numbers end
by 0, 2, 4, 6, or 8. The last digit of number of sum of two
numbers is calculated by the sum of their last digit of
numbers. So the sum of two even numbers ends also by 0,
2,4,6,or8.

Mathematical proof (numerical): The proof is same as that
of thought experiment but with the table 1.
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.. . . . Table 1: exhaustion
C3;: Even numbers can be divided in two identical parts

Naive empiricism (numerical): 4 +8=12=6+6,6+8=14="7+17, etc.

Crucial experiment (numerical): 1 take arbitrary two even numbers. 188 + 76 = 264
=132 +132.

Generic example (numerical): With two even numbers: 12 and 18. 12 + 18 = (6 + 6)
+(O+9)=(6+9)+(6+9)=15+ 15 We can do this for any two even numbers.
Generic example (graphical): ::: + ::::1 = i (separate horizontally). We can
do this for any two even numbers.

Thought experiment (natural language): Even numbers can be divided in two
identical parts. So, if you add each divided part of two even numbers, the sum can -
be also expressed by two identical parts.

Mathematical proof (algebraic): Va, b: even number, 3p,q € Zs.t. a=p +p, b =
qtqat+tb=@p+p+@+t9P=@E+q+{@+q.

Cs;: Even numbers can be divided 2 by 2

Naive empiricism (numerical): 4 +8=12=2+2+2+2+2+2,6+8=14=2+
2+2+2+2+2+2 etc.

Crucial experiment (numerical): 1 take arbitrary two even numbers. 188 + 76 = 264
=2+2+ ...

Generic example (numerical): With two even numbers: 4 and 8. 4 +8 = (2 +2) + (2
+2+2+2)=2+2+2+2+2+2. We can do this for any two even numbers.
Generic example (graphical): ::: + ::::0 =i (separate vertically). We can do
this for any two even numbers.

Thought experiment (natural language): Even numbers can be divided 2 by 2. So, if
you add two numbers divided 2 by 2, the sum can be also expressed 2 by 2.
Mathematical proof (algebraic): Va, b: even number, Ap,qe€ Zst.a=2+2+ ...
+2(pterms),b=2+2+ ... +2(qterms). a+b=Q2+2+ ... +2)+ 2 +2 + ...
+2)=2+2+...+2(p+qterms).

Cy;: Even numbers have 2 as a factor

Naive empiricism (numerical): 4 +8=12=2%x6,6+8=14=2x 7, etc.

Crucial experiment (numerical): 1 take arbitrary two even numbers. 188 + 76 = 264
=2x 132
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Generic example (numerical): With two even numbers: 12 and 32. 12 +32=2x6 +
2x16=2x (6+16)=2x22. We can do this for any two even numbers.

Thought experiment (natural language): Even numbers have 2 as a factor. So, if you
add two numbers having 2 as a factor, the sum have also 2 as a factor.

Mathematical proof (algebraic): ¥V a, b: even number, 3p,qe Zst.a=2xp,b =
2xQqat+tb=2xp+2xq=2x%x(p+q).

Cj3 : Even number can be expressed by a = 2p (p : whole number).
Mathematical proof (algebraic): Y a, b: even number, 3 p, q€ Zs.t.a=2p, b =
2q.a+b=2p+2q=2(p+q).

What we can expect from this analysis
Distance between the conceptions: C; tests all the cases, C; and C; show structure

We can point out some differences between C,;, C,, and C; by analysing each type of
proof from a mathematical point of view. C; pays attention to numbers or the
representation expressed by the decimal system!* and observes all the sums of last
digit of numbers between 0, 2, 4, 6, and 8 (exhaustive). In this case, the structure of
even numbers or their sum is not evidenced. On the contrary, C, and C; do not focus
on specific numbers, but the structure of even numbers, of their transformations, and
of their sums, and the proofs are constructed by showing them.

" Whereas we gave a proof based on a'generic examp1e with C;, this example is not
for sums of numbérs chosen among {0, 2, 4, 6, 8}. In fact, Ci-proofs except naive
empiricism and crucial experiment can be separated in two phases. The generic
example showing the structures intends to establish the first phase "the last digit. of -
sum of two numbers can be calculated by the sum of each last digit of numbers".
The second phase consists of showing that the sums of two digits between {0, 2, 4,
6, 8} end by one of the same digits. Thus C; cannot give generic example for a
whole proof, although C, can. This division in two phases also shows a gap between
pragmatic proofs having only one phase and more intellectual proofs. In fact, not
limiting at this example of two even numbers, it's not easy for the students to shift
from a mere judgement to eliciting the structure of a mathematical notion.

Besides, we can also find that C, and C; have a very close nature. In fact, C,; divide
into two identical parts (p + p), Cy, divides 2 by 2 (2 + 2 + ... + 2 (p terms)), and
Cy; has 2 as a factor (2p). And these "2" appearing in C, can be seen as "2" of "2p"
in C3. Thus we consider that there is not a big obstacle in passing from C, to C;. On
the contrary, C; where only the last digits are important is very different from C,
and C;. From these points of view, we can find that the distance between C, and C;
is smaller than between C,; and C,.

Three elements relying on each other: conception, representation, and proof type

Among the different proof types we have presented, the construction of some proofs
is a little probable. For example, C,-naive empiricism and C,-crucial experiment.
Almost everybody would use C; when they are asked to judge whether the given
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number is even or not (ex. Is the number 243992 even?). It's enough to verify the
last digit of number and very easy and simple. On the other hand, judging a large
number by C, requires a great and hard work. As the naive empiricism and the
crucial experiment require this simple judgement, if the students have a proof
conception of these types, it's obvious that they take C;. Thus, we could state that
more relevant or effective conception exists according to the choice of a proof type.

On the contrary, we can also state that the choice of a proof type depends on the
"available conception"®). As C, already shows the structure of even numbers, this
conception facilitates the construction of a generic example. And it's very obvious
that nothing but a mathematical proof can be constructed with Cs.

As concerns the language, the representation used in a C;-proof is likely to be
numerical since C; focus is always on the last digit expressed by the decimal system.
Thus, even if students have algebraic representation as a modelling tool, it will be
difficult for them to produce an algebraic mathematical proof if they have not
available a relevant conception (in our case, C, or C;). In other words, if the
available conception for students is only C,, it is unlikely that they will construct an
algebraic proof. On the other hand, the possible representations with C, could be
numerical, graphical, algebraic, and the natural language, because C, doesn't always
focus on the digits like C;. And, only the algebraic representation is used for C;.
This key role of language is not new. However what is remarkable is that it's not
- always the algebraic representation which is necessary to' construct a mathematical
proof. The most relevant one for a mathematical proof depends on the mobilised
- conception. Therefore, if the intention of teacher is to make students to construct an
algebraic proof, he has to design a situation which "disqualifies" C; but favour C;.

The graphical representation that appears to be a rather easy way to present the
structure of a number and a given operation, is only plausible under C,; and C,,. We
suggest that this representation may be used with the intention to make more
"visible" the structure (like "proof that explain" of Hanna (1989)). On the contrary,
one can remark that the representation impacts the choice of a proof type. Let us
take C, as an example. If one use only the numerical one, the possible types of proof
are naive empiricism, crucial experiment, and generic example. With natural
language, only thought experiment, with graphical one, generic example, and with
algebraic one, mathematical proof.

THE RESULTS OF A CASE STUDY
Observation

To get data about proofs constructed by students, we have proposed a questionnaire
to 37 students of 9™ grade (aged almost 14 years) from Grenoble area in France. The
students were just asked to make a proof for the sum of two even numbers: "Is the
following statement is true or false? Prove your answer. «When you add any two
even numbers, your answer is always even»". We didn't present examples of proofs
to students like in the study made by Healy & Hoyles (2000), because the aim of our
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observation is to get some data in France and to characterise their tendency and their
possible reasons. In France, the proof learning begins progressively from explanation
or justification at the 6™ grade and is taught mainly in relation to deductive
reasoning at the 8 grade in geometry.

Results
We have classified students' proofs ’ T¢ Tc., Tc.. Jomer
depending on the conceptions and the Naive empiricism]| 12
types of proofs (table 2). The criteria Crucial iment| 8
of this classification are following: uea ‘foe"men
Generic example| 1 4
Naive empiricism: proofs based on few [Thought experiment 1
cases, only some sums are shown. Mathematical proof| 3 >
Crucial  experiment. these proofs Other > 4

consist of a statement that describes the
use of large numbers like "with two
large numbers", "take arbitrary two numbers", or large numbers explicitly used
comparing to others, even if it is not stated.

Generic example: these proofs consist of just one case that is specifically analysed
and this analysis attempts to show the structure of even numbers and their treatment.
Thought experiment: such proofs attempt to show the structure of even numbers and
thelr transformation or computation with natural language

Table 2: Frequencies for conceptions and proofs

These proofs can not always reach a complete achlevement Some proofs in.which
we were not able to identify a related conception, are classified to the column
"other". And the line "other" of proof type is for the case where the statement "the
sum is even" is taken as a hypothesis (circular argument), or where students evidence
their conceptions but don't show any idea of a proof. We couldn't find C,;-proof or
C;-proof. As regards the operational representation, only one student used the
natural language (Cy-thought experiment). Very few students used the algebraic
representation (2 C,;-mathematical proofs and 1 Cy-other). No student used the
graphical one. And all the rest took the numerical one (hence 33/37). Whereas the
observation method was not same, we couldn't remark, as Healy & Hoyles (1998,
2000), that students used narrative argument for their own approach.

Much more than half of the students (24/37) produced a C;-proof, most of them
(20/24) based on a naive empiricism or a crucial experiment. And proofs of these
types were only based on C,. We consider two mutual reasons of these frequencies
following our theoretical analysis. First, proof conceptions of students remain in the
types of naive empiricism or crucial experiment, like Healy & Hoyles stated, so they
take C; that is useful for these types. The proof types precede the conceptions.
Second, the conception C, is not available to students, so they take C; which lead to
these types of proof. The conceptions precede the proof types. In this second reason,
it is not same what they "know" about a tool as they can use it as own tools. For
example, Maud's proof (figure 1) shows two conception: "the even numbers go two
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by two" (Cy,) and "they always end by same digit" (C,). But the conception used in
the given example is only the later. With these two reasons, we cannot explain why
they cannot give intellectual proof. We consider that this is due to the different
characters between the proof types. As we have mentioned in our analysis of the
possible proofs, there is a gap in the proof structure between the first two types and
the others: the former has one phase and the latter has two phases. Among these
reasons, none relates to the lack of algebraic knowledge, that is, even if students had
algebra available, they could not construct an algebraic mathematical proof with C;.

Only one seems a proof based on a generic
example (figure 1). We have classified this
proof as a generig N xample, whereas the by the same digit: 2, or 4, or 6, or, 8, or 0.
treatment of last digits was not shown. In | . c. s34

this proof the second phase (exhaustive ‘& j even digit

sum) was implicit. Maud would think the
second phase was too evident. On the
contrary, all C;-mathematical proofs were Figure 1: Maud's proof

proof by exhaustion and the first phase was

always implicit, that is, students would think the first phase was too evident. This
point gives evidence of difference what must be proved between students.

The statement is true, because the even
numbers go two by two; they always end

even digit

C,,-proofs were always based on a generic example (4/4), and none of them were
naive empiricism or crucial experiment. A reason would be that C,, is relevant to
- showing “the structure” which leads to a generic example and useless for naive
empiricism ‘and crucial experiment. However, none of these students could construct
a mathematical proof. Three reasons may be offered to understand this. First, the
lack of algebraic knowledge as a modelling tool. Second, their proof was always of
the type "generic example" and C,, is relevant in this case. Third, a lack of method
for applying algebra to the expression "2 + 2 + ... + 2". In fact, students are not
used to an expression like "a=2+2 + ... + 2 (p terms)". So, we could also suggest
that Cp,-mathematical proof is little probable as a student's proof.

Concerning C,3-proofs, while the total number of these proofs is not great (5/37),
any of them were not based on naive empiricism, nor crucial experiment, nor
generic example. For the former two types of proof, the reason would be same as
Cy: Cy3 is useless for verifying whether a number is even or not. But why no
generic example? We consider that this fact distinguishes the nature of Cy; from that
of Cj;. The reason would be that algebra as a modelling tool is easy to apply with
C,;3, or the generic example of Cy; is not enough to persuade for students.

CONCLUSION

In this paper, we have presented a study of the relation between proof and
conception, in the case of the problem taken from Healy and Hoyles. In the
mathematical analysis of possible proofs, we have shown that the proof character
(exhaustion, demonstration evidencing a structure, or another types of proof) would
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be changed by several conceptions which are possible with a mathematical notion.

In the case study, we got the data of students' proofs and their tendency, and
explained them with the results of the theoretical analysis. This would be one
response to the results obtained by the study of Healy & Hoyles (1998, 2000). For
example, it would be not only the problem of algebra (representation) or of proof
conception (proof type) that students could not construct mathematical proof, but
also that of conception on a mathematical notion (in our case even number).

For the perspective of mathematical proof learning, our study also showed the
necessity to design a situation where students could mobilise more pertinent
conception or which enable to shift from a conception to more pertinent one. The
mathematical knowledge has a crucial role there.

NOTES

1. This point is similar to the two elements of the formal definition proposed by Balacheff (2000)
who models a conception with a quadruplet (P, R, L, >) in which: P is a set of problems; R is a set
of operators; L is a representation system; Y. is a control structure.

2. We didn't separate "divided by 2" and "multiplied by 2", because they have the same sub-
conceptions.

3. In the French literature, Duval (1995) calls this representation "semiotic register”.
4. C, is not applicable if numbers are given in the trinary system or odd number system.

5. "Available conception” means in this paper the conception or the operator that is not only know
but also which can be used by students. ] :
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