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Abstract: The paper proposes the metaphor of a ‘Theoretical Physicist’ for 
explaining the thinking of students in proof situations and for designing a 
genetic approach to proof. In regard to students’ cognitions, a formative and 
an established phase in the (personal) development of a theory are 
distinguished. In the genetic approach to proof which is sketched in this 
paper, geometry is, during an introductory phase, treated as an empirical 
theory. 

The Metaphor of a “Theoretical Physicist” 
Quite a few students of the secondary and even tertiary levels tend to confirm 
mathematical statements by appealing to measurements or special examples. They 
consider them as sufficient argument though they already have had experiences with 
mathematical proofs and, according to their teachers, should know that the general 
validity of a mathematical statement cannot be established in this way (see for 
example Healy & Hoyles, to appear; Coe & Ruthven, 1994). Some papers report on 
students asking for additional testing of a statement by means of an example after its 
proof has been treated in the classroom and and in spite of the fact that the students 
claim to have understood it. (Fishbein, 1982, 16). Some students believe that a proof 
is valid only for the special diagram which is attached to it (Hefendehl-Hebeker, 
1995).  

In the present paper I will search for explanations of these phenomena and try to 
show that this type of thinking occurs with a certain necessity and is a consequence of 
a meaningful behaviour. In a second step some proposals will be made for dealing 
with these ideas of the students in a constructive way and for leading them step by 
step to mathematical argumentation proper. I call this a ‘genetic approach to proof’. 

Frequently, difficulties of students with proof are considered as indicating a lack of 
logical insight (see f.e. Stein, 1990). Therefore, some textbooks introduce the topic 
‘proof’ by exposing logical ideas as, for example, the difference between a statement 
and its converse and the distinction between a statement which is true for some cases 
and a generally valid one. In contrast to this, the present paper departs from the 



hypothesis that ‘mathematical proof’ is above all a problem of epistemological 
meaning (Hanna & Jahnke 1993, 433f). The role and function of mathematical proof 
will not be explained to the students by referring exclusively to mathematics and to 
purely mathematical examples. Rather, the contribution of mathematical proof to 
human cognition in general and to human understanding of the surrounding world has 
to be exposed. Put in another way, I will consider mathematical proof not through the 
eyes of a pure mathematician but from the point of view of a theoretical physicist. 
The term ‘theoretical physicist’ is meant metaphorically and designates a person who 
develops and evaluates mathematical deductions in order to better understand the 
world in which he lives. 

Using this metaphor we bring ourselves in a position beyond the established division 
of labour which separates mathematics from other disciplines. Especially, we get a 
fruitful alienation of our view on the relation of mathematical proof and special cases. 
While in pure mathematics we believe in the general validity of a theorem established 
by a mathematical proof, the situation in physics is different. Physicists will not 
accept a conclusion of a theory derived by a mathematical argument without 
experimental verification. If a conclusion is new and important, a physicist will 
develop an experimental test of it. In this sense, the metaphor of a ‘theoretical 
physicist’ might help to analyse the thinking of a pupil who prefers empirical 
arguments. 

Proof and Measurement in Mathematics Teaching 
Students are frequently asked to measure the angles of a triangle, for example. After 
they find that their sum is always nearly equal to 180 degrees, they are told that 
measurement can establish this fact only for individual cases and that they will have 
to prove it if they really want to be sure that it is true for all triangles. This 
explanation may have been obvious at the time of Plato and Euclid, but it must seem 
unsatisfactory at a time when experiment and measurement are considered the 
foundation of scientific methodology. To avoid contradiction, the students are, of 
course, told that the triangles they draw are fundamentally different in nature from 
the triangles that play a role in geometrical theorems - the latter are ideal or 
theoretical entities, whereas the former are empirical. As valid as this distinction may 
be, teachers themselves still assume that one can be sure about the sum of the angles 
of empirical triangles, without any further reflection, after the respective theorem for 



ideal triangles has been proved, and they cannot help conveying this conviction to 
their students. 

In physics lessons, however, the message is exactly the other way round. One would 
never seriously entertain the idea that a natural law might be established by a 
theoretical proof, and one would insist that all such laws are founded upon 
experiment and measurement. (see Hanna & Jahnke, 1996, 892 f). 

Therefore, in teaching beginners an intellectually honest way is to take side by the 
physicist and to say that the angle sum theorem is true because of empirical 
measurements. Only at a later stage, one should expose the idea of a purely 
mathematical theory separated from reality. 

In the next section we will explain the consequences of this position and the meaning 
of mathematical proof in empirical theories. 

Proof and Measurement in Physics 
Theories of physics are systems of statements/theorems whose quantitative 
consequences are expressed in natural laws. Natural laws are mathematical equations 
between measurable magnitudes, for example the law of gravity or the dependence of 
the product of pressure and volume on (absolute) temperature in ideal gases. The 
ensemble of natural laws contained in a theory can be derived from a few 
fundamental assumptions by mathematical proofs. Within a certain domain of 
tolerance the validity of the natural laws is corroborated or refuted by 
experiments/measurements. 

An isolated natural law which is not linked to other natural laws can only be 
corroborated by experiments which are directly related to it. In contrast to this, a 
natural law within a theoretical network is corroborated not only by direct 
measurements but by all the measurements of all the natural laws belonging to the 
network. Thus, a mathematical proof deriving a statement (natural law) of the theory 
does not provide absolute certainty to this statement, but it will considerably enhance 
its certainty since the corroboration does not only come from an isolated set of direct 
measurements but from all measurements related to the theory. Such a theoretical 
network of statements and measurements connected by mathematical proofs is the 
safest form of knowledge at our disposal, though this does not change its, in 
principle, preliminary character. 



In the development of science the firmness of a theory becomes especially visible in 
such moments when a mathematical deduction allows a not obvious prediction which 
afterwards is corroborated by measurements. The ability of a theory to make such 
predictions is the most important criterion of its firmness and fruitfulness. 

Applied to our example of the angle sum theorem this means that its proof will not 
give absolute certainty to the theorem, but it will enhance its certainty since it 
connects the theorem with other geometrical theorems which can also be 
corroborated by measurements. Thus, the theorem is not only tested by measuring the 
sum of the angles of a triangle, but also by measuring corresponding angles, alternate 
angles or sums of angles in 4-, 5-, 6-gons. In a long school career the students come 
to know so many statements which are connected with the angle sum theorem and 
empirically testable that they understand why Euclidean geometry is the eldest and 
empirically best corroborated theory we have and why, for a long time, 
mathematicians and philosophers attributed absolute certainty to it. 

To fully understand the problem of justification we have to discuss a further idea 
which is especially stressed by holistic philosophies of science. They point to the fact, 
that the methods for measuring the magnitudes in a natural law suppose, as a rule, the 
validity of the theory containing this law. For example, it is not possible to measure 
the magnitudes force (F) and mass (m) appearing in Newton’s law F m a= !  without 
supposing in some way that this law is already valid (see Jahnke, 1978). Philosophers 
of science say that the observational language is ‘theory loaded’. P. Duhem 
(1908/1978) was among the first who pointed to the importance of this fact. 

As a consequence holistic philosophies of science from P. Duhem to J. D. Sneed 
(1971) claim that theories as a whole have to be corroborated or refuted. If we accept 
this claim, and I think there is no reasonable alternative to this, then we have to draw 
the conclusion that a theory has to be jugded whether it is successful. In the process 
of assessment many criteria and points of view play a role which, in part, are beyond 
the limits of explicit reflection. All in all this assessment is a matter of judgement 
and, thus, a pragmatic decision. The ultimate reason for accepting a law is not of a 
logical, but of a pragmatic nature. 

Assessing a theory as being valid or acceptable implies a statement about its future. 
Scientists express their expectation that it will be possible to derive further 
phenomena and applications from the theory at hand which will be corroborated by 



experiment. However, scientists are always conscious of the possibility that new 
phenomena might be discovered which falsify the theory in its present form and 
require to modify some laws or even to introduce new parameters. In principle, 
scientific theories are open to revision. 

I would like to call this fundamental fact the circle of justification. In regard to the 
angle sum theorem we have to conclude that a logical proof alone cannot provide 
certainty to it. A logical proof reduces a theorem only to other theorems as for 
example to the theorem about alternate angles at intercepted parallels. The latter, 
however, has no higher degree of certainty than the former. The statement “In future, 
I will consider this theorem as valid” requires an assessment of the whole situation 
independent and different of the mathematical proof. This assessment takes into 
account results of measurements, other theorems, considerations of plausibility. Such 
phases of assessment are not part of the teaching of 7th graders to whom the angle 
sum theorem is conveyed. The underlying concept of proof which is determined by a 
purely logical view excludes this type of reflection. 

A judgement about a theory as valid and successful, however, can only be made in an 
advanced and late period of its development. Consequently, we have to distinguish 
between two phases, that before and that after this judgement. We call the former the 
formative phase of a theory, the latter its established phase. In the formative phase a 
theory is considered as one among several possibilities of explaining a certain area of 
phenomena. It is not clear which the adequate basic concepts are and the theory is 
taken as hypothetical. In the established phase the theory has been judged as being 
valid and successful and is taken as the only legitimate explanation of the phenomena 
to which it is related. Scientists agree upon definitions of the basic concepts, the 
explanations of the theory are considered as safe, the theory has been transformed 
into a “system of theorems which can be derived from a few axioms”. 

The Different Functions of Proof in the Formative and Established 
Phases of a Theory 
Mathematical proofs have different functions in the formative and established phases. 
When Newton published his Philosophiae naturalis principia mathematica Kepler’s 
laws of planetary motion were well-tested empirical statements whereas Newton’s 
law of gravity was an uncertain and to a high degree contestable hypothesis. 
Newton’s proof, thus, couldn’t have the function to establish the truth of Kepler’s 



laws. Rather, it was the other way round. The fact that Kepler’s laws could be derived 
from the law of gravity was the decisive argument in favour of the latter. To use a 
term of I. Lakatos Newton’s proof didn’t effect a flow of truth from the assumptions 
to the conclusion, but, vice versa, from the conclusion (Kepler’s ellipses) to the 
assumption (the law of gravity). In the last regard, Newton’s proof was a ‘proof’ of 
the law of gravity. 

However, the situation was even more complicated and this sharpens our stance. At 
Newton’s time astronomers were well aware that Kepler’s laws did not exactly 
describe the movements of the planets. Therefore, astronomer Cassini proposed 
certain ovals (4th degree curves) instead of ellipses as paths of the planets. Some 
astronomers followed him. In this situation Newton’s proof was a strong argument in 
favour of Kepler’s ellipses and, thus, there was also a flow of truth from the 
assumptions to the conclusion. 

However, in order to arrive at this conclusion the scientists at that time had to 
evaluate the situation as a whole. It was the fit, or, to say it more emphatically, the 
harmony between Kepler’s laws and the law of gravity which served as the decisive 
argument to accept both of them at the same time as the adequate and ‘right’ theory 
of planetary motion. In a second step the deviations of a planet from the elliptic path 
were explained as perturbations by the other planets, in order to get an empirically 
satisfactory theory. 

Therefore, in the formative phase of a theory proofs do not effect an uniquely 
directed flow of truth since there are no accepted foundations. What a proof means in 
a concrete situation is subject to a judgement which has to take into account the 
whole theoretical and empirical context. 

The Behaviour of Proof Novices 
Proof novices are considered in this paper as students in their personal formative 
phase of a geometric theory. 

Semi-formal interviews with 6 students of grade 7 which took place after a first 
introduction into geometrical proof showed some interesting results. 4 students were 
ready to consider the possibility that there are triangles with an angle sum different of 
180° degrees. Rather, the low achievers denied such a possibility (see Balacheff 
(1991) for similar experiences).  



Being asked to prove the angle sum theorem none of the interviewed students gave 
the Euclidean proof though this proof had been treated in class and was required in a 
written test a week ago. However, five students were able to reproduce the Euclidean 
proof after they had been shown the figure related to this proof. Instead of the 
Euclidean proof four students derived the angle sum theorem from the fact that an 
exterior angle of a triangle is equal to the sum of the non-adjacent interior angles.  

These findings show: the students move tentatively in a network, but the network is 
still lacking structure. They are still in the formative phase and behave accordingly. 

Another example from teaching is as follows. After a proof of the fact that the 
perpendicular bisectors of the sides of a triangle meet in one point a pupil remarked: 
“You can’t say that this is true for every triangle, there are still other triangles [pupil 
points to the drawing]”. The teacher answered: “We have only used properties valid 
in every triangle” and continued with another subject (Hefendehl-Hebeker 1995; see 
also Williams, 1979, and Balacheff, 1988, for the observation that, frequently, 
students think a proof valid only for the triangle shown in the drawing). Clearly, the 
pupil in this episode is in the formative phase of a theory. He is not sure whether 
there has not been used some hidden or not explicitly mentioned feature of a triangle 
by referring to the drawing. Also, there could be some parameters involved which are 
not known for the moment but which might influence the situation. Whether a 
drawing is special or general and whether one uses a general drawing in a special way 
is a matter of an evaluation which presupposes experience with proofs in Euclidean 
geometry, but is not part of the proof and not at all a matter of pure logic. Thus, the 
conclusion that the proof is valid for all triangles presupposes an evaluation of the 
whole situation which involves pragmatic aspects. On the other hand, the teacher is in 
the established phase of the theory and argues from his point of view. To him it is 
obvious that the parameters used in Euclidean geometry (length, angle) determine the 
situation completely, and he has a sense, built up by experience, which aspects of a 
figure are general and which are not. However, his inability to realise that he is 
arguing from a point of view completely different to that of his pupil causes a serious 
problem of teaching and of understanding the nature of proof in general. 

The Genetic Approach 
The point of departure for introducing pupils to mathematical argumentation is the 
question ‘why’. A regularity or pattern is observed and the question arises what 



makes things the way they are. Answering such questions can be considered like 
performing a thought experiment. The basis of argumentation and the chain of 
conclusions have to be developed simultaneously. Such activities can already occur at 
the elementary level (for examples see Wittmann & Müller, 1990) 

After such a ‘culture of why questions’ has been developed over several years of 
mathematics teaching there will come a time when proof is explicitly taught and the 
term ‘proof’ explicitly mentioned to the students. In Germany, this is usually the case 
in grade 7 in the course of geometry teaching. One of the first proofs is that of the 
angle sum theorem for triangles. 

Usually the theorem is proved in the classical Euclidean way and reduced to the 
alternate angle theorem. The latter is ‘proved’ by means of transformation geometry. 
Mathematically, this is not terribly honest since the axiom of parallelism is tacitly 
used and not mentioned to the students. Obviously, the intention of text book authors 
and teachers is to convey to the students the idea that proof leads to absolute certainty 
in contrast to measurements which are not precise and valid only for single cases. 

In contrast to this, I would suggest that –at this stage!- geometry is presented as an 
empirical theory. Then the meaning of proof is not to replace measurement by 
something more certain, but to relate measurements and proofs in a theory. Proofs 
help to measure in an intelligent way (Winter, 1983; Jahnke, 1978). 

To give an example I would propose to present the alternate angle theorem neither as 
a theorem proven nor as an evident truth but as an uncertain empirical hypothesis. 
Doing this we introduce the idea of modelling and the possibility of non-Euclidean 
geometries into teaching in a way adequate to pupils of the 7th grade. Consider the 
following work-sheet. 
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The straight line h rotates counter-clockwise around vertex P. 
For some positions of h measure the angles β, γ and δ. Tabulate 
and write down your observations. 

 

Students will observe: (1) Q travels more and more to the right. (2) γ increases, β 
decreases. (3) Losses of β  are exactly compensated by gains of γ. (4) There is at least 
one position of h with δ = 77°. (5) In this position h and g will not intersect. (6) To 
this position corresponds that Q has travelled to the infinite and that β = 0°. 

It is plausible that the losses of β  are exactly compensated by gains of γ also in the 
infinite (there shouldn’t be a jump). But we cannot know this and we cannot test this 
directly. But we can prove: if exact compensation takes place then the angle sum of a 
triangle is exactly 180°. 

To this idealised chain of observations and arguments the teacher could add the 
remarks that Euclid wasn’t sure about exact compensation in the infinite and 
therefore added this statement as a hypothesis to geometry and that Gauss tried to test 
this hypothesis by measuring angles in very large triangles. 

Having reached this starting point further theorems involving angles in triangles and 
general polygons might be proved and empirically tested. Theorems which are 
proved before any measurement has been done are like predictions in physics. In this 
way students come to study a ‘small theory’, and they get an idea of what a theory is, 
how measurements and proofs are related and why it is better to have a theory than 
not to have one. 

In subsequent teaching further small empirical theories should be developed as it is 
done in the project “Arguments from physics in mathematical proofs” (see Hanna & 
Jahnke 2002) where for example axioms from static are the starting point for a 
theory. 

In a final phase theories are constructed for their own sake. These theories are no 
longer considered to be empirical theories. 
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