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Abstract

This paper analyzes with a practical teaching porpouse some aspects of using visual
constructions during problem solving processes. In particular, we analyze some geometric
constructions made to conjecture the solution to Heron’s problem, and obtain two different
categories of visual representations. The paper includes explicit contributions of some par-
ticipants of group on proof at CERME IV, specially trying to make connections between
research and teacher practice.

1 Introduction

Visualization has been a main topic in mathematics education research for the last decade,
and many different theoretical perspectives and practical resources have been developed [16]
[12] [17] [8]. Especially in the field of geometry many contributions have been made,
emphasizing the connection between symbolic and visual representations of mathematical
knowledge [10], [1].

Attending the specific moment of formulating a conjecture, many investigations have
focused on the role of drawings within geometrical activity, and inquired into the intimate
relationship between drawings and concepts [14].

The main theoretical ideas that we will consider here as a framework are the following:

1. Visualization is a concept connecting both symbolic and iconic representations, which
are linked by the problem solver in a process of interaction. This view of visualization
is characterised by a continuous change between these representations [10]. In the
school context, the teachers often gives support to this change by acting as an external
mediator between iconic and symbolic thinking.

2. Among the functions attributed to visualization, we focus here on its power as a builder
of mathematical ideas, and we consider it necessary for heuristic reasoning [12], and
thus of producing conjectures. The symbiosis between concepts and geometric figures
stimulates new directions of thought, but there are logical or conceptual constraints
which control the process [7].
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3. Both, visualization and conjecturing have an important contextual component, and
any observation is made within a particular context, so that its applications in other
situations, surely vary [12], [5]. It is not our objective to produce some general
classification of conjectures, able to be applied for every problem or any situation,
but to analyze what in a very concrete setting occurs to build bridges between practice
and research. For theoretical works supporting this link between teaching and research,
see [2, 3, 13].

As we analyzed in this paper the kind of conjectures arsing from the discussion of
Heron’s problem, we pose it now, and comment briefly its solution:

Heron proofs in hisCatropticathat the light rays cover a minimal distance supposed that
incidence angle and reflection angle are equal [9]. A modern statement of the problem, more
commonly used, is the following:

Let s be a line andA andB two points at the same side ofs. For which pointP in s is
AP + PB the shortest way joiningA andB? [4]

The most usual geometrical construction used to solve the problem is the same proposed
by Heron:

Let C be the point symmetric to A with respect to the lines, so that the segmentAC is
perpendicular tos. The line joiningB andC intersectss in P , which is the point we are
looking for. (see Figure 1).

We analyzed here which kind of geometrical ideas were used to conjecture the solution
to Heron’s problem, when it was posed to future primary teachers.
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Figure 1:

2 Drawing of visual diagrams to conjecture the solution

Heron’s problem was proposed in a primary teacher training course on mathematics. It was
their first year at the university, and there were approximately fifty people in attendance.
The problem was proposed to the students, who discuss the solution in groups. Afterwards,
different approaches were discussed in the whole class.

When trying to solve the problem, five conjectures arose, some of them depending on
the refutation of others. One of the groups explained conjecture 1 in Table 1 and presented
it as a solution of the problem. Afterwards, the whole class were invited to share diverse
approaches to the problem, and other conjectures were discussed. These conjectures are
summarized in Table 1.
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Table 1: Geometric constructions to visualize a solution of Heron’s problem.

Conjecture Proof or counterexample
1. Construction suggested by
Heron. P is the intersection
betweens and the line joiningB

and the symmetric point toA with
respect to the lines
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For any other pointQ ∈ s, it must
be proved thatAQB > APB.
Since

AP = CP ,

AQ = CQ ,

AP + PB = CB , and

AQ + QB = CQ + QB ,

we deduce from the triangle
inequality for4CBQ that

AP + PB = CB

< CQ + QB = AQ + QB

2. P is the intersection betweens
and the median ofAB.
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3. P is the intersection betweens
and its perpendicular through the
mid-point ofAB.
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Table 1: Geometric constructions to visualize a solution of Heron’s problem.

Conjecture Proof or counterexample

5. O is the intersection between
AD andBE. P is the intersection
between s and its perpendicular
throughO.

A
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s

B
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D

This conjecture gives a correct
solution to the problem. Since

AE

OP
=

ED

PD
y

BD

OP
=

ED

EP
,

we deduce that

AE · PD = BD · EP

AE : EP = BD : PD

Thus 4AEP and 4BDP are
similar, and∠APE = ∠BPD.

All of them look for the pointP by intersecting lines drawn from the lines and the
given pointsA andB. All of the students assumed implicitly thatP must lie between the
pointsE y D obtained by intersectings and the lines perpendicular tos throughA andB,
respectively.

Attending the use of conceptual procedures in the constructions of visual diagrams to
conjecture a solution, these have been firstly classified into two categories:

C1. Constructions based on previous knowledge -conceptual, iconic
or procedural- or on the refutation of a previous conjecture.

The first three conjectures in Table 1 follow from this kind of construction. The first one
reduces the problem to the consideration of joining two points by a straight line. In this case,
the concept of minimal path is embedded in both the problem and the diagram, and those
who made this conjecture had the insight to apply their knowledge that the shortest distance
between two points is a straight line, but to do so is not trivial, as other knowledge, related
to the preservation of distance under reflection, must come into play [15].

The second one determinesP as the point of intersection between the perpendicular
bisector ofAB ands. The consideration ofP as lying on the perpendicular bisector between
A andB allows one tobalancethe distance between the two drawn segments. Students
implicitly assign to its points the property of being at the same distance to the extremes of
the segment, and this makes this conjecture a good one to solve the problem, illustrating
an interesting confusion that occurs in solving such problems: equal distances are often
confused with shortest distances.

The refutation of this conjecture, using a new construction whereP does not lie on the
segment, induces a new conjecture. This new conjecture depends on the previous one, which
affirms thatP lies onAB (Conjecture 3), and could be based on the fact that the mid point of
AB is conserved under vertical projection. This new construction permits them to minimize
one part (AP ) of the total path APB, and is, according to [14], an attempt to control the
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process of producing a more and more satisfactory drawing. But the solution is also easily
refuted by a counter example in which the horizontal distance betweenA andB is small
compared to the vertical distance between them.

The two remaining conjectures were considered independent from the later two, as they
arose in different groups after they said they have no idea how to findP .

C2. Spontaneous constructions

Constructions of this kind apparently do not follow any procedure or conceptual strategy,
except to obtain a pointP between the extremesE y D (Conjectures 4 and 5)1. They
assume that we expect from them a geometrical diagram leading to P, and produce it by
simply making lines starting from the given points, but they are not able to explain why
they are doing it so. Although both drawings in conjectures 4 and 5 are created in the
same “reckless” way, the fourth is very easy to refute with a simple counterexample; the
last conjecture, however, leads to a correct solution for the problem, and generated a long
discussion involving the whole class.

When trying to refute the last conjecture by a counter example, all new diagrams proved
useless. The students then started to check thatin all cases,the pointP and the one obtained
using Conjecture 1 are the same. But the problem is that this new diagram does not permit
them to visualize the pointP produced by conjecture 5 as a solution of the problem, and
even once its validity have been proved, the logical argument involving similar triangles is
not significative enough.

3 Didactical approach to conjecture

The analysis of the situation described above led us to four questions addressing what in our
view are important demands for research on conjecture, arising directly from the teaching
practice:

1. Conjecturing and proving

For the students working on this problem, the use of geometrical drawings to solve the
problem is easy, as opposed to giving a proof. Once they have guessed Conjecture 1
(Table 1), the conflict is not that they do not knowhow to prove it, but to understand
that theyneeda proof. The construction is considered in itself as a solution of the
problem and no symbolical proof is required. For many students, this construction
remains a proof, at least until they construct a more elaborated concept [11]. But this
is not the case when considering the fifth diagram.

The formulation of the conjecture, orempirical solution [10], needs to offer a key
for a second phase involving themeaningof a proof in order to be effective. As a
consequence, some research linking types of conjectures and proof is needed, empha-
sizing the more systematic and deductive side of mathematics, and having in mind that

1To see the counterexample in 4, consider the locus of all pointsX in the plane such thatAX+BX = AE+EB,
which is an ellipse throughE andD with focal points inA andB. The segmentED is entirely contained in that
ellipse, and thereforeAE + ED > AY + BY for any pointY in ED, different fromE andD.
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usually students, and many teachers, look at Mathematics from a more inductive and
experimental point of view. Making explicit some nexus between problems, conjectures
and proof could generate a proper way to make proof significative for the students.

2. Types and elements of conjectures

Conjecture 5 offers them no clues about its validity, as the first one did. While in
the first case the construction is enough for the students to visualize the solution of
the problem (“there is nothing to prove –said one of the students–, because the shortest
path between two points is a straight line”), this is not the case with the fifth diagram. A
priori, spontaneous constructions offer no clue to find the solution. According to [10],
even though the use of different representations is a key to progress in problem solving,
geometrical representations and their continuous use do not yield, by themselves, the
process towards the solution. This last construction instills uncertainty in the students,
as there are no elements that enable them to recognize the problem. This generally
happens with spontaneous constructions. Students should analyze their geometrical
constructions in terms of the given problem in order to be able to use them for solving
the problem. Some investigations argued that when producing a drawing, students try
to reach harmony between figural and conceptual aspects [14]. However, this does not
seem to be so in the case analysed here, as there are some spontaneous constructions
which lack this harmony.

For our practical purpose of analyzing this particular experience from the perspective
of teaching practice, the distinction between spontaneous and non-spontaneous has
been adequate and productive enough. This is not the case when we want to address
a more complete frame to conduct practical experiences involving guessing. This
point calls then for research a) characterizing types of conjectures, and b) identifying
through categories the cognitive processes involved in each type. This call addresses
the more inductive and experimental side of Mathematics, and it is specially relevant
for teaching practice, as the students should also learn about effective guessing.

3. Creating knowledge by linking conjectures

Training of visualization or the use of geometrical diagrams to conjecture the solution
of a problem should consider the analysis of spontaneous constructions, as these arose
frequently during our investigation. The act of visualising and producing new diagrams
has an important contextual reference. Here, it is the continuous creation and refutation
of conjectures which promotes the creation of new ones. It is in this sense that we are
not able to extend these conclusions to other groups and individuals.

On the one hand, the lack of conceptual knowledge prevents the students from knowing
if they are really constructing a satisfactory drawing or not. On the other, the students
also need strategies of interpreting their spontaneous constructions in terms of the
statement of the problem in order to understand the role of the drawing in the problem
solving process.

At CERME 4 in Sant Feliu, David Reid discussed the problem with us in the working
group on proof, and offered us the following possible link between Conjectures 2 to 5
in an hypothetical situation:

“The diagram created in Conjecture 2 (Table 1) in a context of reasoning suggests the
next conjecture (conjecture 3). The problem it reveals is that the point P should stay
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on the segment ED that is the projection of AB onto s. This constraint, combined with
the earlier consideration of trying to equalise distances, suggests that the midpoint of
ED, or alternately the projection of the midpoint of AB onto s, is the point P. This new
construction also accounts for the known special case. If A is on s, however, a new
counterexample is produced (counterexample to Conjecture 3). This diagram shows
clearly the correct solution in another specific case: When A is on s then the shortest
path is AB itself. The emphasis shifts to defining P is such a way that it can be seen as
a continuous transformation from this initial situation. As A moves up, P must move
to the right. The segment EB provides a mechanism to produce this motion: A is
projected horizontally onto EB to the point O and then O is projected vertically onto s
to the point P (Conjecture 4). Again a counter-example is not hard to find (see Table),
because this construction does not work in the original special case, when EA=DB.

Combining the two special cases (and the mirror image of the second) suggests Con-
jecture 5: O is the intersection between AD and BE. P is the intersection between s
and its perpendicular through O” [15].

Then, it seems plausible to think that a sequence of conjectures, each based on a single
special case –or two special cases, as in the last one– a conjecture is produced that
turns out to be correct and it provides a few clues for the proving process, although
does not produce an instant proof (as with conjecture 1). How to bring this process
of linking conjectures nearer to the students seems to be very important in order to
improve their knowledge about guessing, as well as to let the teachers know about the
importance of making explicit these plausible links. This would help to conceptualize
an otherwisespontaneousand often meaningless conjecture.

4. Problems and conjectures

Heron’s problem has been especially interesting to analyse because it requires an
approach via a geometrical construction to conjecture its solution. The problem is
also rich enough to give rise to many conjectures. When the students are able to create
and interpret properly those constructions, they are often in a good position to conjec-
ture the right solution or to downright solve the problem properly. But not all problems
have the same potential to enable the students guessing, as not all problems are equally
interesting to learn about proving.

From a very concrete perspective of an in-service teacher, an expository material
including commented examples of problems to make understandable types and elements
of conjectures would be desirable. Such a material should give them keys to evaluate
problems from this point of view, understand and re-create their practice, as well as
permit them to question research on the basis of their own practice.
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