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Abstract: In this paper, we intend to provide theoretical arguments for the 
importance of taking account in quantification matters while analysing proofs in a 
didactic perspective, not only at tertiary level, where various research are still 
available, but also at secondary level and we argue that natural deduction in 
predicate calculus is a relevant logical reference for this purpose. Following Quine, 
we emphasize on an example the interest of formalizing mathematical statements in 
Predicate Calculus in a purpose of conceptual clarification. In a second part of the 
paper, we give some short insights about the theory of quantification before exposing 
the system of Copi for natural deduction. The last section is devoted to analysing a 
proof using the logical tools offered by natural deduction in predicate calculus. 
 
I. About he importance of quantification in elementary geometry  
It is widely recognized that in tertiary mathematical education, quantification matters 
are central and source of strong difficulties, even for gifted students (Dubinsky & 
Yparaki, 2000, Selden & Selden, 1995, Epp 2004, Chellougui, 2003) ; but  it seems 
that, in secondary mathematical education, a low interest is paid on quantification 
matters. 
Concerning the French context, in most research in didactic of mathematics, the 
logical tools used to analyse proofs are referring mainly to propositional calculus. 
This is the case for Toulmin's model, used for example by Pedemonte (2003) or 
Hoyles & Küchman (2003). This is also the case for Duval's analysis (Duval, 1991, 
1995) widely used in French research about argumentation and proof. In these 
frames, the focus is on the fundamental inference Modus Ponens. Toulmin (1993) 
introduces the notion of warrant, which is a statement supporting the claim as a 
consequence of the data. Duval (1995) speaks of "Enoncé-tiers", a statement in the 
form "if p, then q", namely a theorem that is already known. Giving such a theorem, 
once it is stated that, in the considered situation, the conditions required in the 
antecedent are fulfilled, the conclusion is to be detached. In such frames, the bricks 
for analysing reasoning are clearly propositions; that means linguistic entities likely 
to be either true or false. Their main interest is their simplicity and their wide 
spectrum of application. However, as we have shown it on various examples 
(Durand-Guerrier 2003a, 2003b), there are a lot of proofs, even in elementary 
mathematics, that do not fall under this type of analysis. Indeed, quantifications 
matters are usually involved in mathematical proofs, and not all of them can be 
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absorbed in propositional calculus The ones with which no problem may arise are 
those classical proofs that require a universal conditional theorem with exactly one 
free variable: "∀x T(x) ⇒ F(x)". But of course, even in a Geometry course taught in 
middle school, you can find statements involving two or more variables and 
eventually both existential and universal quantifiers. We will now illustrate this point 
with an example. Let us consider the following statement: "for all three points that do 
not lie on the same line, there exists a unique circle on which these three points are 
lying". In order to formalise this statement, three one-place predicates:  P (to be a 
point) ; L (to be a line) ;  C (to be a circle) ; a two-place predicate : R ( to lie on ), and 
six variables x, y, z  t, u, v are required to provide the following formula :  
(1) 

! 

"x"y"zP(x)#P(y)#P(z)#¬ $t L(t)#R(x, t)#R(y, t)#R(z,t)( )( )( )% 
 

! 

"u C(u)#R(x,u)#R(y,u)#R(z,u)# $v C(v)#R(x,v)#R(t,v)#R(z,v)( )% v = u( )( )( )  
Obviously, this is generally hidden in the mathematic class. The main reason is that 
most often the figure provides the information expressed in the statement, so that it is 
no use to have in mind all the condition while solving a classical problem relying on 
a particular figure. However, if students are supposed to be able to overcome the 
figure information to deal with general statements, it is worthwhile to keep in mind 
the complexity of the formula. The syntax of formula (1) reminds us that behind our 
ordinary simple gestures in mathematics, are hidden many constraints to be taking in 
account. In this particular case, it becomes apparent when you have to reason in 
general cases : either it is necessary to control that the considered points do not lie on 
a same line, or it is necessary to distinguish the particular cases from the general 
ones. More over, the last part of the formula gives a path to proving uniqueness in 
such a case. Considering precisely the conditions lead to explicit the difference 
between a line, a general curve, and a circle, and to emphasize the fact that in 
Euclidian Geometry "to lie on the same line" for two points is a general result, while 
for three points or more it is a property that might be satisfied or not, and to continue 
with the fact that you have the same result replacing "to lie on the same line" by "to 
lie on the same circle" and "two points" by "three points". Finally, a question such as 
"what is it for four points" could arise. More generally, it emphasizes the fact that 
behind symbols, there are objects of various nature and with various properties This 
is in keeping with Quine' s point of view who claims that the formalisation in 
Predicate Calculus contribute to conceptual clarification.  
  
II. Difficulties with statements involving quantifiers  
We have given in the previous paragraph some arguments that focusing on 
quantifiers may be useful for teaching mathematics, even at secondary school. But, 
since the late seventies, after the disaster of the so called " Réforme des 
mathématiques modernes" in France, logical considerations have been thrown out of 
programs and progressively from mathematics classroom. In a French famous book 
addressed to mathematical prospective teachers, Glaeser (1973) notes that 
quantification matters and consideration about symbol's logical status overcome the 
purpose of its book, due to the subtlety of distinction between individual and variable. 
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A way to escape these questions is to work with generic elements, so that quantifiers 
and variables disappear to benefit of individuals. This is the main way we do in 
secondary mathematics class in France, following the Euclidian tradition. In this 
respect, the theoretical frame proposed by Duval (1995) to analyse proofs fit with this 
ordinary practise. However, as we have shown elsewhere, this may lead on the one 
hand to deep misunderstanding in statements, particularly those involving implication 
(Durand-Guerrier 2003a) or negation (Durand-Guerrier & Ben Kilani, 2004), and on 
the other hand to invalid proofs (Durand-Guerrier & Arsac, 2003). In the last case, it 
happens that even tertiary mathematical teachers do not recognize the logical error 
due to an incorrect handling of quantifiers. It can also occur that a well-founded 
doubt about validity appears while the proof is actually valid (Arsac & Durand-
Guerrier, 2000). Our own research corroborates results from Selden & Selden (1995) 
who claim that unpacking the logic of a mathematical statement is necessary for 
advanced mathematics, and provide empirical data showing that doing this is very 
difficult for most students. Chellougui (2004) shows clearly, on the example of the 
notion of supremum, that difficulties with quantification matters at university are 
underestimated in French textbooks and, in a Tunisian context rather similar in this 
respect with the French one, in courses provided to students. Bloch (2000) had 
already shown that difficulties with quantification matters could arise when dealing 
with the notion of upper bound. As a consequence, far from contributing to 
conceptual clarification, formalisation in predicate calculus leads to opacity for 
definitions and erratic use in proofs. Nevertheless, it appears, in semi-directive 
interviews that, as soon as there are no more quantifiers involved, students recover 
their ability to prove.  
  
III. Presentation of the natural deduction in Symbolic Logic by Copi. 
 
III.1. Some brief insights about the theory of quantification  
Although Aristotle was already deeply concerned with quantification matters, it takes 
a very long time before a sound quantification theory could be established. According 
with most authors, Frege (1879) is the first logician who established it on a secure 
foundation ; he was followed by Russel (1903) and many others who developed it all 
along the first half-twentieth century. Quine (1902-2002), the famous American 
logician and philosopher defended all along his life the importance and the relevance 
of predicate calculus system and its methods for sciences in general and mathematics 
in particular (Quine, 1950, 1987). In his widely used textbook of formal modern logic 
(Quine, 1950, fourth edition 1982), two parts apart from four are devoted to 
quantification - Part 2: General terms and quantifiers; Part 3: General theory of 
quantification -. A large treatment of proof for logical validity is provided, referring 
in particular to what he calls the main method, consisting in proof for inconsistency, 
namely reductio ad absurdum, and the dual method for direct proof for logically 
valid implication. As an introduction of the main method, he wrote : 
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" We turn now to a proof procedure that will be found to be complete: adequate to establishing the 
validity of any quantificational schema and hence also to establishing any implication1 and any 
inconsistency." (Quine, 1982, p.190) 
It is important to point this at the very beginning of the exposition because, in this 
method, a rule relying on a logically invalid quantificational schema is introduced; 
and so it is for the dual of the main method for direct proof that he presents further 
and which inherits of the completeness of the main method. The direct method is "of a 
type that is known as natural deduction and stems, in its broadest outlines, from Gentzen and 
Jaskowski (1934)" (ibid. p.244). Many versions of natural deduction can be found in the 
literature; all of them follow the same purpose: to remain as near as possible of the 
way mathematicians reason. What we learn from history is that quantification is 
much more complex than it is generally thought and that the main purpose of the 
promoters of predicate calculus is the control of validity, especially in mathematic. In 
this respect, although these methods have been elaborated for controlling validity in 
Predicate calculus itself, and opposite with other methods for validity, natural 
deduction systems provide relevant tools for controlling validity of mathematical 
proofs2.  
  
II1.2. General features of natural deduction systems  
The main interest of natural deduction in a didactic perspective lies in rules for 
elimination and introduction of both propositional connectors and quantifiers. 
Elimination for implication is the well-known inference rule called Modus Ponens. 
Introduction of implication is called by Quine "Condizionalisation" :   
"[The rule of conditionalization] consisted in showing that whenever one statement could be 
deduced from another in the concerned system, the conditional formed of the two statements could 
also be proved as a theorem by the original rules of that system"(Quine, 1982, p.244) 
It is easy to recognize here the classical way to prove a conditional statement in 
mathematics, in case both antecedent and consequent are propositions. It is related 
with the theorem of deduction established separately by Herbrand and Tarski and it 
plays a fundamental role in mathematical proofs. However, it is rather remarkable 
that the importance of this rule is generally not emphasize in didactic research about 
reasoning, the focus being preferably pointed on Modus Ponens. The same 
phenomenon is to be seen concerning the rules for elimination and introduction of 
quantifiers that are nearly never considered in mathematics classroom, even at the 
university, being replaced most often by informal reasoning rules (Durand-Guerrier 
& Arsac 2003)3. There are four rules concerning quantifiers ; two of them are relying 

                                                
1 In this textbook, Quine considers that the term "implication" must be kept for the logically valid 
conditional (for some development, see Durand-Guerrier, 2003, pp.9-10) 
2 For examples, see Arsac & Durand-Guerrier (2000); Durand-Guerrier & Arsac (2003) and 
Durand-Guerrier & Arsac to appear in Educational Studies in Mathematics. 
3 And for a reference in English, Durand-Guerrier & Arsac to appear in Educational Studies in 
Mathematics 
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on logically invalid quantificational schema so that restrictions are required to insure 
validity. The main differences in the various systems concern these restrictions. 
Quine version is very complete and brightly exposed, but it is rather technical and 
spread in several different chapters. For this reason, we prefer presenting the version 
of Copi (1954, second edition 1965) that is exposed in a more compact way, and thus 
most easy to summarise. 
 
IV.2 Quantification rules in the Symbolic Logic by Copi (1954, 1965)  
Symbolic logic by Copi is a first textbook written to serve to undergraduate and 
graduate students, in which, as it is the case in Quine (1950), quantification matters 
are widely developed. We refer for our presentation to the second edition (Copi, 
1965), in which the quantification rules are presented twice. In this paper, we present 
only the preliminary version, that we will complete by some specific restrictions 
needed for preserving validity. 
The first rule of inference concerns elimination of the universal quantifier ; it is called 
Universal Instantiation (U.I.) and states that :  
" (...) any substitution instance of a propositional function can validly be inferred from the universal 
quantification. We can express this rule symbolically  
  

! 

(x)"x

#"v
 (where v is any individual symbol)" (Copi, 1982, p.50) 

This rule relies on the valid schema 

! 

(x)"(x)#"(y)  and expresses that "what is true 
for all is true for any".  
The second rule is the dual of the first one and concerns the introduction of the 
universal quantifier ; it is called Universal Generalisation (U.G.) and states that : 
"(...) the universal quantification of a proposition can validly be inferred from a substitution 
instance with respect with the symbol y. Our second expression for this quantification rule is  

  

! 

"y

#(x)"x
 (where y denotes any arbitrarily selected individual)" (ibid., p.51) 

This rule relies on the invalid schema 

! 

"(y)# (x)"(x) . For this reason, it necessitates a 
restriction; you must be sure that no assumption other than the property expressed by 
Φ has been done. Obviously, it is build "by analogy with a fairly standard mathematical 
practice"(ibid., p.50) 
The third rule concerns the introduction of the existential quantifier; it is called 
Existential Generalisation (E.G.) and states that :  
"(...) the existential quantification of a propositional function can be validly inferred from any 
substitution instance of that propositional function ; (...) Its symbolic formulation is :  

  

! 

"v

#$x"x
 (where v is any individual symbol)" (ibid., p.52) 

The fourth rule is the more delicate to use. It concerns the elimination of the 
existential quantifier and states that :  
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"(..) from the existential quantification of a propositional function we may validly infer the truth of 

its substitution instance with respect to an individual constant which has no prior occurrence in that 

context. The new rule may be written as   

  

! 

"x#x

$#v
(where v is an individual constant having no prior occurrence in the context) 

(Ibid. p. 52). 

As the second rule, this one relies on an invalid schema, namely 

! 

"x#(x)$#(y). The 
restriction is here very strong and many errors are due to forgetting it, particularly 
when, in a proof, an existential instantiation follows a universal instantiation4. We 
have shown  (Durand-Guerrier & Arsac, 2003, 2005 to appear) that this restriction is 
closely related with the dependence rule. A consequence of these restrictions is that 
you must not only have a control for each step of the proof, but also have a control on 
the global proof. In particular, it is not possible to make a universal generalisation on 
an individual introduced by an existential instantiation.  
 
 

IV. Analyse of a geometrical proof  
We come back now to the theorem introduced in the first paragraph: "For all three 
points that do not lie on the same line, there exists a unique circle on which these 
three points are lying". 
A fairly classical proof of this theorem for pupils grade eight can be written in the 
following form. 
Proof: Let A, B and C be any three points not relying on the same line. Let us 
consider Δ1 the mediator of the line segment [AB] and Δ2 the mediator of the line 
segment [AC]. As the lines (AB) and (AC) are not parallel, then the two mediators 
are secant; O denotes their intercept. As O is on the mediator of [AB], OA=OB; for 
an analogous reason, OA=OC. Conclusion, B and C are on the circle, say Γ, whose 
centre is O, and whose radius is OA. As a circle is perfectly determined by its centre 
and its radius, this circle is unique. 
 
VI. First analyse of the structure of the proof 
First of all, it is to notice that the first assumption is a universal instantiation of the 
antecedent of conditional that remains implicit in the given formulation of the 
theorem. Indeed, the formulation is given with a bound quantifier, that restricts the 
scope of the universal quantifier to those elements that satisfy the required property. 
But of course, it is to prove a conditional, namely: "For all three points, if they do not 
lie on the same line, then there exist a unique circle on which these three points are 
lying".  

                                                
4  See for example Bagni (2005) 
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The general structure of the theorem to prove is (1) '

! 

"x"y"z(#(x,y,z)$%(x,y,z)) '. and 
the macro structure of the proof compounds three steps :  
 
1.To apply Universal Instantiation to the given statement to get the propositional 
conditional (2) '

! 

"(a,b,c)#$(a,b,c) '.This first step remains implicit as it is generally 
the case in mathematics. The corresponding statement will be "Given three points A, 
B and C, if they do not lie on the same line, then there exists a unique circle on which 
these three points are lying". 
 
2.To prove by "conditionalization" the statement derived by universal instantiation. In 
order to do this, an auxiliary premise is introduced. It is a derivation in the proof. 
Following, for example, Hofstader (1979), we indicate its debut and its end by two 
brackets :  
 
[

! 

"(a,b,c)  
Mathematical treatment 

! 

"(a,b,c)] 

(2)

! 

"(a,b,c)#$(a,b,c)  Introduction of implication 

The brackets indicate that the statement on the first line (the antecedent of the 
conditional to prove) is introduced as an auxiliary premise, i.e. in this context, it is 
not assumed as a true statement. As a consequence, the statement on the last line 
before the bracket (the consequent of the conditional to prove) is not a true statement 
in the context. So, according with us, writing "conclusion" before this last statement 
is not relevant. Indeed, the proof is not over! The conclusion of this step is the 
conditional statement (2) formed by the statements on the first line and the last line in 
this order. 
 
3.To apply Universal Generalisation to statement (2) in order to infer statement (1), 
that is the statement to prove. 
 
In France, in mathematics classroom, it is rather common to consider only the step 2. 
More over, in exercises, generally, only the part of the proof that we have written in 
brackets is considered, without making clear that an auxiliary premise is considered. 
As an example: (A,B,C,D) is a convex quadrilateral ; I, J, K, L are respectively the 
midpoints of its sides [AB], [BC], [CD], [DA]. Prove that (I,J,K,L) is a parallelogram. 
Once more, what is to prove is the conditional statement. May be you could think that 
the status of all these statements are obvious, but it is likely that it is not the case for 
some students. We may wonder if the nearly exclusive focus on the very core of the 
proof, where indeed the mathematical treatment is done, could be a didactical 
obstacle for an adequate appropriation of the specificity of mathematical reasoning, 
that means proving general results by mean of hypothetical-deductive method. Frege 
(1971) said that mathematicians often avoid to distinguish between proving 

! 

"#$ 
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and proving 

! 

" by Modus Ponens on 

! 

"#$ and 

! 

" , and emphasized the importance of 
this distinction. This question of determining if this practise is a possible didactic 
obstacle remains open and requires further empirical research. Some argument 
supporting this thesis is thus provided by Mathematical Induction. Mathematical 
Induction is introduced in France at grade eleven; it is typically a method of proof 
that requires clarifying both conditionalization and Universal Generalisation and it is 
well known that many students feel strong difficulties to capture the signification of 
this method. 
As it must be clear, the macrostructure that we describe in this paragraph is rather 
independent of the content of the considered statement. We considered a very general 
level of syntax, shared by most of mathematical statement, in order to focus to the 
incompleteness of the proof usually provided in class. However, as we have seen in 
the first paragraph, the deep structure of the statement is more complex. And the 
simplicity of the proof we provide is deceptive. Indeed, there are many elements 
involved in the proof that do not appear, especially those theorems which assert 
existence under conditions. To illustrate this point of view, we provide in next 
paragraph an analyse of a short excerpt of the core of the considered proof in Copi's 
system.  
 
V.2.  Mathematical and logical features in the core of the proof.  
We consider in this paragraph a small abstract of the proof in order to examine on the 
one hand hidden existential instantiation and on the other hand how logical and 
mathematical considerations work together. At this stage of the proof, we are in the 
core of the proof in which the auxiliary premise 'AP1 :  Points A, B, C do not lie on a 
same line' has been introduced, and we consider two intermediate conclusions ;  
'C1: A, B, C are three different points', which is an immediate consequent from AP1, 
and  'C2 : There exists exactly one point lying on both mediators of [AB] and [AC] '. 
While analysing the proof with Copi's system5, it appears that it is necessary to 
express premises under the general form, which is not necessary the case in the 
standard format.  In our cases, the four following premises are required. 
 P1:  For all point M, N and P, if M and N are different, P lies on the mediator of 
[MN],if and only if PM=PN ; 
P2: For all points M, N and P, if M and N are different and if P lies on the mediator 
of [MN], then P is different from M and N ; 
P3:  For all two points M and N, if M and N are different, then there exist a unique 
circle whose centre is M and whose radius is MN ; 
P4:  For all M, N and P, if M is different from N, and if MP = MN, then P lies on the 
circle whose centre is M and whose radius is MN. 
An immediate remark is that in all these statements interplay implication, universal 
quantification and for some of them existential quantification. This is a very general 
case in Geometry, but generally, it remains implicit because most of the information 

                                                
5 We give in appendix the analyse with Copi's system of this excerpt  
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is visible on the figure and consequently only part of the statement is explicit. For 
example P3 is replaced by 'P lies on the mediator of MN if and only if PM = PN', so 
that the condition that points M and N ought to be different disappears. As every 
teacher knows, while dealing with general proof, it is very common that students 
forget particular cases or existence's conditions. Taking care of these particular cases 
and existence's conditions requires that the focus be moved from propositions to 
objects. More precisely, if the mathematical effective arguments are indeed expressed 
through propositions, it is nevertheless necessary, to apply them in a sound manner, 
to keep control about the handling of quantifiers. 
 
VI. Conclusion 
 
In this paper we try to show in which respect natural deduction in predicate calculus 
provides tools for analysing proof by taking in account quantification matters. By the 
exigency of introducing every symbol used in the proof, distinguishing dummy 
variables and individual symbols, natural deduction in predicate calculus offers a 
possibility to control the validity of proof and in certain cases point out implicit that 
might lead to incorrect proof. By focusing on interplay between propositional 
connectors and quantification, it provides an extension of the classical tools used in 
didactic of mathematics to analyse proofs. According with us, this enlightens the fact 
that many things are silenced in the standard manner, especially those considerations 
concerning the existence of the objects that are introduced. We have shown that it is 
relevant for analysing proof in tertiary mathematical education. We make the 
hypothesis that it is also the case in secondary mathematical education, and we 
thought that we give in this paper some insights to open a path for further research 
considering this question. More generally, these considerations show clearly that for 
us, the logical validity is a prominent criteria for analysing proofs in a didactic 
perspective, prior from the focus on proving to convince or proving to explain6. 
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Appendix 

Analyse with Copi's system of an excerpt of the proof studied in section V. 
 
 
The first seven statements are the premises. Let us remind that AP is the auxiliary premise, antecedent of the 
conditional to prove, and that C1 and C2are intermediate conclusions, while P1, P2, P3, P4 are theorems.  
 
(1) AP.  Points A, B, C do not lie on a same line  
(2) C1. A, B, C are three different points  
(3) C2. There exists exactly one point lying on both mediators of [AB] and [AC] ' 
(4) P1.  For all point M, N and P, if M and N are different, P lies on the mediator of [MN],if and only if 
PM=PN ; 
(5) P2. For all points M, N and P, if M and N are different and if P lies on the mediator of [MN], then P is 
different from M and N ; 
(6) P3.  For all points M and N, if M and N are different, then there exist a unique circle whose centre is M 
and whose radius is MN ; 
(7) P4.  For all M, N and P, if M is different from N, and if MP = MN, then P lies on the circle whose centre 
is M and whose radius is MN. 
 
(8) O lies on both mediators of [AB] and [AC]    Existential Instantiation on (3) 
(9) O lies on the mediator of [AB]     Separation on (8) 
(10) if A and B are different, then O lies on the mediator of  [AB] if and only if OA = OB 
         Universal Instantiation on (4) 
(11) A and B are different      Separation on (2) 
(12) O lies on the mediator of [AB] if and only if OA=AB  Modus Ponens on (10) & (11) 
(13) OA=OB        Modus Ponens on (9) & (12) 
(14) O is different from  A and from  B    
    Universal instantiation followed by Modus Ponens on (9), (11) & (5), 
(15) O is different from A      Separation on (10) 
(16) There exist a unique circle whose centre is 0 and whose radius is OA.    
    Universal instantiation followed by Modus Ponens on (15) &(6) 
(17)  Γ is the circle whose centre is 0 and whose radius is OA  Existential instantiation on (11) 
 (18) B lies on the circle  Γ whose centre is 0 and whose radius is OA Modus Ponens on (11), (13) & ( 7) 
(19) C lies on the circle  Γ whose centre is o and whose radius is OA  Substitution from (9) to (18) 
(20) A lies on the circle  Γ whose centre is O and whose radius is OA Substitution in (13), (15), (18). 
(21) A, B and C are lying on circle  Γ     Conjunction on (19), (20), (21) 
(22) There exists a circle on which points A, B and C are lying  Existential generalisation 
 


